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Neural computing technology is capable of solving problems involv-
ing complex pattern recognition. This technology is applied here to
pharmaceutical product development. The most commonly used
computational algorithm, the delta back-propagation network, was
utilized to recognize the complex relationship between the formu-
lation variables and the in vitro drug release parameters for a hy-
drophilic matrix capsule system. This new computational technique
was also compared with the response surface methodology (RSM).
Artificial neural network (ANN) analysis was able to predict the
response values for a series of validation experiments more pre-
cisely than RSM. ANN may offer an alternative to RSM because it
allows for the development of a system that can incorporate litera-
ture and experimental data to solve common problems in the phar-
maceutical industry.
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INTRODUCTION

The pharmaceutical product development process in-
volves the optimization of formulation and process vari-
ables. Since this process is normally characterized by mul-
tiple objectives, quantitative prediction of the system behav-
ior from basic physical and chemical principles is often
difficult. The response surface methodology (RSM) has
proven to be a useful tool for handling such problems (1).
RSM allows the formulator to approximate the true system
behavior as a function of the formulation and process vari-
ables and to determine the apparent optimum conditions.
The utility of RSM in pharmaceutical product development
has been demonstrated by several workers (2-8).

Recent advances in the areas of computer science, neu-
roscience, and applied mathematics has resulted in the de-
velopment of artificial neural networks (ANNs). ANNs can
identify and learn correlative patterns between input and
output data pairs. Once trained, they may be used to forecast
outputs from new sets of input conditions. The use of ANNs
does not require prior understanding of the underlying pro-
cess or phenomena under study (9). These features make
ANNSs well suited for solving problems in the product de-
velopment area.

The purpose of this study was to illustrate an ANN
approach for a pharmaceutical technology application and to
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compare it with RSM. The pharmaceutical problem chosen
for this study involved the design of a controlled-release
hydrophilic matrix capsule containing blends of anionic and
nonionic cellulose ether polymers. The in vitro drug release
profile is a function of the various polymer characteristics
and their relative amounts in the matrix. Mechanistic anal-
ysis of this system is presented elsewhere (10).

NEURAL COMPUTING

Neural computing technology utilizes the basic princi-
ples of the human brain to solve pattern recognition types of
problems. The ANN is the basic mathematical model for this
computational system (11-17). This network is a series of
highly interconnected layers of processing elements. These
elements represent a mathematical analogue of biological
neurons. The connections between each individual process-
ing element and its counterparts in other layers represent the
architecture of the network. In general, a typical ANN must
have one input layer and one output layer and may contain
one or more hidden layers.

Neural computations occur in a three-step sequence
consisting of the learning, recall, and generalization phases.
During the learning phase, the ANN is presented with a
series of input/output data pairs (the training data set)
whereby the ANN attempts to learn the inherent relation-
ships in the data set. Once the learning phase is completed,
the trained ANN can operate in the recall phase where re-
sponses are generated from the input data used in the train-
ing set. In the generalization phase, this ANN is used to
generate responses from new input data.

Of the many possible neural architectures, the back-
propagation network is the most commonly used (9). This
network is a system of fully interconnected layers of pro-
cessing elements, as shown in Fig. 1. The input data are
distributed to the processing elements in the input layer. The
result from each processing element in the input layer is sent
to the processing elements in the hidden layer. The hidden
layer processes these signals and generates output signals
that are transmitted to the nodes of the output layer. The
processing results from the output layer becomes the output
of the entire network.

The function of the processing elements is to receive,
modify, and propagate signals. A typical processing element
is shown in Fig. 2. It is capable of receiving signals from the
other elements in the preceding layer or directly from input
data, summing the signals, transforming the sum, and send-
ing the results to the other elements in subsequent layers.
There are a number of transform functions currently being
used in neural network analysis. The most commonly used
transform function in back-propagation neural network anal-
ysis is the sigmoidal function:

1
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During the learning phase, the information that is passed
from one processing element to another is contained within
a set of weights. These weights, which are adjustable during
successive computational sweeps through the network, are
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Hidden Layer
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Fig. 1. Artificial neural network architecture for the problem
studied.

determined by minimizing the sum of the squares of the de-
viation between the experimental and network output val-
ues. The minimization procedure involves two steps. The
input data presented to node i from node j of the preceding
layer is first transformed by the following equation:

I; = 2 w;iO; 2)
J

where w; is the adjustable weight connecting element i to
element j, O; is the output from the previous element, and 7;
is the resultant input to element i. In the input layer, w;; is
equal to 1 and O; corresponds to the sigmoidally transformed
input data. The output from element i is transformed using
the sigmoidal transform function given by Eq. (1), where x
becomes I; and Y; becomes O,. The most commonly used
learning rule in the back-propagation algorithm is the delta
rule, where the weights are adjusted by the following equa-
tion:

wit! = wi B(®0) + awj — wi™)) 3)
where « is the momentum factor, B is the learning rate, n is
the iteration number, and 3 is the error signal from the pre-
vious processing element. The momentum factor is used to
accelerate the learning process by incorporating some infor-
mation from the previous computational sweep. The learning
rate is a multiplication factor which is used to determine the
magnitude of successive weight changes. Too large a learn-
ing rate may cause such drastic weight changes that the net-
work is unable to learn effectively, whereas too small a
learning rate slows down the learning process. The error
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Fig. 2. Schematic of a typical processing element.
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signal, 3, represents the deviation between the output of the
element and its target value. The error signal for the process
element i of the output layer is given by

5, = (T; = O)f' () C))
and that for the processing element j in the hidden layer by
8 = £ X, (W) ©)

k

where T, is the target value, f'(l,) is the first derivative of the
transfer function with respect to /;, 3, is the error signal of
element £ in the hidden layer, and w,, is the weight between
node i and node k. Once the network has been trained, it can
be used for both recall and generalization.

MATERIALS AND METHODS

Formulation and Drug Release Studies

The hydrophilic polymers used in the capsule matrix
were sodium carboxymethyl cellulose (CMC; DS 0.7, DP
3200, Scientific Polymer Product, Inc., Ontario, NY 14519)
and hydroxypropylmethyl cellulose (HPMC; Methocell
K4M, Dow Chemical Co., Midland, MI 48674). Hydroxy-
propyl cellulose (HPC; Klucel HF) and hydroxyethyl cellu-
lose (HEC; Natrosol HHX) were obtained from Aqualon
Co., Wilmington, DE 19850.

The effects of polymer blending on the in vitro drug
release profiles were studied by using the four-component
simplex centroid mixture design shown in Fig. 3 (21). The
drug-to-polymer ratio was Kept constant at 1:3. Hence, the
mixture design is based only on the polymer weight fractions
in the matrix. For all matrices, the weight fraction of each
polymer in the matrix must adhere to the following con-
straint:

4
> e =10 ©)
i=1

where O, is the polymer mass fraction. The powders were
mixed by passing through a No. 80 sieve 7-10 times. Ap-
proximately 275 mg of the mixture was filled in a size 2 hard
capsule (Eli Lilly and Co., Indianapolis, IN 46285). The in
vitro release studies were performed in a paddle apparatus
(Vanderkamp 600, Van Kel Industries, Edison, NJ) at 50
rpm. Distilled water at 37°C was the dissolution medium. A
stainless-steel screen mesh was placed above the capsule to
keep it immersed in the dissolution medium. Chlorphenir-
amine maleate (Sigma Chemical Co., St. Louis, MO 63178)
was used as the model compound. Dissolution samples were
assayed by UV spectrophotometry (Varian DMS 100 UV
spectrophotometer, Walnut Creek, CA) at 261 nm.

Response Variables

The response variables used to characterize the release
profile were the release exponent N and the dissolution half-
time T 5 in hours. Both parameters were estimated by non-
linear regression analysis (18) according to the following
equation (19):
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Table I. Experimental Design and Response Values

Formulation Exponent N, Ty s,
No. CMC HPMC HEC HPC mean (SD) mean (SD)
1 1 0 0 0 1.58 (0.04) 2.99 (0.08)
2 0 1 0 0 0.67 (0.02) 2.05 (0.06)
3 0 0 1 0 0.67 (0.03) 3.06 (0.19)
4 0 0 0 1 0.55 (0.02) 3.58 (0.19)
5 %3 %3 0 0 1.09 (0.07) 6.31 (0.75)
6 173 0 123 0 0.99 (0.03) 7.79 (0.85)
7 %3 0 0 173 1.16 (0.02) 5.09 (0.14)
8 0 [z %3 0 0.87 (0.02) 2.82 (0.10)
9 0 12 0 %3 0.68 (0.02) 3.50 (0.20)
10 0 0 Ya 173 0.68 (0.02) 3.50 (0.20)
11 %) %) Y3 0 0.90 (0.01) 7.03 (0.22)
12 173 Vs 0 4 1.00 (0.01) 5.69 (0.19)
13 1% 0 173 s 0.88 (0.02) 7.89 (0.29)
14 0 A 12} %) 0.72 (0.02) 2.69 (0.14)
15 Ya Va Va Va 0.80 (0.02) 7.51 (0.78)
M, corresponding to different levels of HEC, HPC, HPMC, and
M. ke (7) ' CMC, and the two response variables, N and T, 5 constitute

where ¢ is the release time, M /M., is the fraction of the drug
released at time ¢, k is the proportionality rate constant, and
N is the release exponent. The dissolution half-times were

calculated by
Np.s
Tos = \/07

Three replicates were generated for each formulation.
The resulting experimental data, summarized in Table I,
were used to train the ANN and to estimate the coefficients
in the RSM regression models. The eight validation formu-
lations are shown in Table II. These formulations consisted
of all four polymers and were used to evaluate the predictive
capabilities of ANN and RSM meodels.

®

Artificial Neural Network Analysis

The neural network simulator, Nets, was used in this
study (20). This program requires an ANSI-C environment
and was run on an IBM compatible personal computer (BSR
386SX/16). The ANN architecture was constructed by set-
ting the number of nodes in the input, output, and hidden
layers. For the system studied, four formulations variables

the input and output layers, respectively. The hidden layer
consisted of eight nodes. A learning rate of 0.25 and a mo-
mentum factor of 0.9 were used. To train the ANN, all input/
output data were scaled such that all data points were within
the 0.1 to 0.9 range to conform with the Nets software for-
mat. Other commercial programs, such as the Neural Works
Professional IT (Neural Ware Inc., Swickley, PA), automat-
ically scale the input/output data and also allow for the se-
lection of alternative transform functions and learning rules.
The predicted values were converted back to the original
scale before comparing the results with RSM.

Response Surface Analysis

The experimental design points in the simplex space
occur at the four permutations of the (1,0,0,0) pure compo-
nents, the six permutations of the (Y2,%2,0,0) binary mix-
tures, the four permutations of the (¥,,5,¥3,0) ternary mix-
tures, and the overall centroid (V4,Y4,va,%) (Fig. 3). The poly-
nomial used to approximate the response surface is the
special quartic equation:

4 4
R=2K;9i+22)\ij9iej+22
i=1 i<j

4
2 A;ix9:0,01

i<j<k
Table II. Validation Experiments
No. CMC HPMC HEC HPC Expt. N ANN [N]¢ RSM [N] Expt. Ty 5 ANN [T, .} RSM [T,]
1 0.50 0.21 0.21 0.08 1.08 (0.02)° 1.11 1.00 5.73 (0.40) 6.36 7.89
2 0.50 0.08 0.21 0.21 1.14 (0.03) 1.12 1.01 6.25 (0.60) 6.21 8.05
3 0.50 0.17 0.17 0.17 1.09 (0.02) 1.14 1.02 5.72 (0.53) 6.00 8.04
4 0.50 0.21 0.08 0.21 1.22 (0.04) 1.18 1.08 5.41 (0.59) 5.44 7.14
5 0.75 0.08 0.08 0.08 1.31 (0.04) 1.39 1.30 4.38 (0.43) 4.10 5.83
6 0.75 0.05 0.10 0.10 1.34 (0.04) 1.39 1.29 4.51 (0.52) 4.06 6.06
7 0.75 0.10 0.05 0.10 1.39 (0.06) 1.41 1.32 4.03 (0.59) 3.90 5.7
8 0.75 0.10 0.10 0.05 1.30 (0.03) 1.36 1.28 439. (0.39) 4.39 6.15

2 Brackets indicate predicted response.
% Standard deviations in parentheses.
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Fig. 3. Graphical representation of the four-component simplex
mixture experimental design.

+ )\,-,-kle,-ejekel )

where R is the predicted response, 9,, 8, ©,,, and 0,,, are

the polymer mass fractions, and \,, A;, N, and X\, are the
RSM coefficients. The coefficients were estimated with the

ECHIP program (22).

RESULTS AND DISCUSSION

The in vitro release data were well characterized by Eq.
(6) (#*: 0.975-0.999). Typical release profiles are shown in
Fig. 4.

The ANN architecture depends on the problem under
study. In this example, the input layer contained four nodes
(four formulation variables) and the output layer contained
two nodes (two response variables). The number of nodes in
the hidden layer were selected by training the network with
4, 6, 8, 10, 12, and 14 nodes. A network containing eight
hidden layer nodes gave the lowest residual sum of squared
error for the training set.

The RSM regression coefficients for both N and T, 5 and
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Fig. 4. Typical in vitro drug release profiles.
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Table III. Summary of Regression Results for RSM
Coefficient N Tos
N 1.58 2.99
A, 0.67 2.05
A5 0.67 3.06
N4 0.55 3.58
A2 —0.16* 15.2
A3 —0.87 19.0
A 0.37 7.2
Aa3 0.79 1.04*
Noa 0.28 1.5*%
N34 0.27 —-0.05*
Aas -1.31 11.1*
Maa 0.32* 4.41%
Ni3a —0.83* 47.8
Naza -1.42 —5.69*
N234 —16.1 242
0.989 0.976

* Not significant at P = 0.05 level.

their respective correlation coefficients are listed in Table
III. The response values from the validation experiments
were predicted and compared with the experimental values
and are summarized as the residual plots shown in Figs. 5
and 6. The mean sum of squared residuals (MSSRs) for the
validation set (mean data) were 0.002 and 0.007 for N and
0.10 and 2.97 for T, s by ANN and RSM, respectively.
The formulations used in the validation set were chosen
to reflect a high degree of system complexity within the sim-
plex space. These formulations occupy regions that were not
effectively mapped by the mixture design. Reevaluating the
regression coefficients for N and T, 5 by adding formulations
3 and 5 from Table II to formulations of the original mixture
design reduced the MSSR from 2.97 to 1.50 for the remaining
six validation points for T, ;. However, no appreciable im-
provement was observed for the MSSR for N. These two
formulations were selected because they lie along the axis
perpendicular to the HPC, HPMC, and HEC plane in the
direction of increasing CMC. Therefore, the modified train-
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Fig. 5. Residual plot for N in the validation set (mean experimen-
tal — predicted values).
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Fig. 6. Residual plot for T, 5 in the validation set (mean experimen-
tal — predicted values).

ing set contained three interior points at three different CMC
levels (0.25, 0.5, and 0.75). Even with this modification for
RSM analysis, the ANN still gave better predictions than
RSM for the validation set.

RSM requires the specification of a polynomial function
to be regressed. The number of terms in the polynomial is
limited to the number of distinct experimental design points.
In some cases, the response variable may be highly nonlin-
ear or discontinuous; therefore, use of a polynomial approx-
imation may not provide an adequate description of the re-
sponse surface; whereas, ANNs have demonstrated an abil-
ity to handle such problems (9). In addition, historic or
literature data may also be used for ANN training.

One distinct advantage of RSM analysis is that the re-
sponse surface is described by a continuous function. A vi-
sual representation of the surface is easily mapped as a con-
tour or three-dimensional (3-D) plot. Also, the relationship
of the rate of change of the response variable with a design
variable is easily achieved by plotting the first derivative of
the response variable as a function of the design variable.
Because ANNs use an internal model, extensive simulations
are required to generate contour or 3-D plots. Also, since the
ANN output is a discrete set of points, numerical differen-
tiation of the output data points is required to evaluate the
rate of change of the response variable with its respective
design variables. A distinct disadvantage of the RSM tech-
nique occurs when the system under study requires a large
number of input and output variables. Selection of an appro-
priate polynomial equation can be extremely cumbersome
because each response variable requires its own individual
polynomial equation. Also, a large number of input variables
may lead to a polynomial with a vast number of coefficients.
While this may not present a computational problem for co-
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efficient estimation, subsequent evaluation can be tedious.
In this situation, some investigators may prefer the internal
model of the ANN analysis. We believe that ANN is a pow-
erful tool, with potential for application in pharmaceutical
product development and other areas of pharmacy.
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